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It is shown that the unsmeared diffuse small-angle diffraction pattern of an arbitrary shape can 
be exactly derived from the integrated intensities measured along lines parallel to the trace of the 
direct beam of linear cross-section. These intensities should be measured for different orientations 
realized by turning the sample about the beam direction. The knowledge of the intensity distribution 
along the direct-beam height is not required in this treatment. The total direct-beam intensity as 
well as the slit height of the detector enter the conversion formula as constant factors and therefore 
need not be known for relative intensity measurements. 

Introduction Derivat ion of correct ion formula  

The true small-angle diffraction pattern corresponds 
to the use of direct beam of point-like cross-section; 
the finite dimensions in the ordinary small-angle 
cameras implies a smearing of the diffraction pattern. 
The current methods of correcting for the imperfect 
collimation of the direct beam are limited only to the 
special intensity distribution of the beam and to the 
special shapes of the true scattered intensity distribu- 
tion (Guinier & Fournet, 1955, pp. 111-120). The 
general case was treated by Kranjc (1955) using the 
convolution theorem for multiple Fourier transforms. 
The knowledge of the intensity distribution in the 
direct-beam cross-section is essential in the use of this 
method. The measurement of the latter quantity is 
not required in the present treatment. 

The smearing of the diffuse small-angle pattern of an 
arbitrary shape due to the slit height is schematically 
represented in Fig. 1. In this figure the trace of the 
beam cross-section lies along the y-axis, where the 
density of points denotes the variation of the direct- 
beam intensity. The contour lines indicate the inten- 
sity distribution of two partial diffuse patterns. Let 
the scattered intensity be integrated along the t-axis 
parallel to and distant by R from the y-axis. This is 
indicated in the left hand part of Fig. 1 for the position 
1 of the sample. The intensity resulting by integration 
of the pattern along the t-axis is equal to the sum of 
the integrated intensities of all partial diffraction 
patterns along that line. The resulting integrated 
intensity is thus independent of the distribution of 
these partial patterns along the beam trace, i.e. of the 
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Fig. 1. Two of partial patterns (contour lines) composing the 

diffraction pat tern before (a) and after (b) rotating the 
sample through the angle a. 
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Fig. 2. Schematic representation of the true intensity dis{~ribu- 
tion (contour lines) and of intensity scattered into a line 
(shadowed area). 
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F i g .  3. G e o m e t r y  o f  r e l a t i o n  (4) d e f i n i n g  ~ ( r ) .  

direct-beam intensity distribution. The same value 
would be obtained with the beam of point-like cross- 
section the intensity of which would be equal to the 
total  intensity of the real beam. The right-hand side 
of Fig. 1 shows the rotation of the partial patterns 
through the angle a resulting from turning the sample 
through this angle about the axis parallel to the beam 
direction. The integrated intensity is then measured 
along the same t-axis. This procedure can be carried 
out for sufficiently close values of c~ ranging from 
0 to 2z. The values obtained in this way are propor- 
tional to the integrated intensities of the unsmeared 
pat tern along the tangent lines to the circle of radius R 
circumscribed round the origin. One such value is 
indicated by the shadowed area on Fig. 2. By ascribing 
these values of integrated intensities to the correspond- 
ing tangent points [x, y] with polar coordinates 
R and a ,  the two-dimensional function E(x, y) 
E(R cos a, R s ina)  is defined. The whole plot of 
E-function is obtained by repeating the above proce- 
dure iu a sufficient range of R. 

The direct reasoning given above leads immediately 
to the following relation between the true intensity 
function l(x, y), the measured function E(x, y) of 
integrated intensities and the distribution function i(y) 
of the direct-beam intensity: 

E(R cos a, R sin a) 

= c f : : I ( R  coscc-tsinc~, Rsincc+tcosa)dt , (1) 

w oro S:: 
c = i(y) dy. 

This relation enables us to calculate the desired 
/-function from the measured E-function. To deter- 
mine the value of the / - func t ion  in some chosen point 
[x, y] let us first of all define the auxiliary function 

~ ( r ) =  (1/2~) I(R cos ~x+r cose, R sin ~x+r sine)de. 
0 (2) 

This function has the property of being radially 
symmetrical round the point [R cos a, R sin a] in 
which it follows from the definition (2) 

q)(0) = I(R cos a, R sin a) . (3) 

Although the function ~b(r) cannot be directly 
measured it can be derived from the other function 
T(r) which can be expressed in terms of the measured 
E-function. The value of T(r) in a point r is equal 
to the integral of ~b(r) along the straight line distant 
by r from [R cos a, R sin a]. The following expression 
of T(r) can be at  first found using the definition (2) 
of ¢(r)  after some geometrical consideration (see 
Fig. 3): 

~(r)  = (1/2~) I([R cos ( e -  ~x)+ r] cos e - t  sin e, 
0 '-1 

[R cos ( e -  ~x) + r] sin e + t cos e) dtJ de. (4) 

This relation can be immediately rewritten by means 
of E-function using its definition (1) with the result 

T(r) = (1/2gc) E([R cos ( e -  a) + r] cos e, 
0 

[R cos ( e - a ) + r ]  s ine)de .  (5) 

The function ¢(r) can be derived from T(r) in the 
same way as for radially symmetrical small-angle 
scattering when deriving the unsmeared /-function 
from the distribution of intensities integrated along 
the straight lines parallel to the trace of the direct 
beam (SyneSek, 1960). Using this analogy we find for 
¢(0) which according to (3) is the only desired value 
of ¢(r): 

¢(0/=-(1/~)  (1/r/~ T(r/dr. (61 

From (3), (5) and (6) we obtain finally the formula 
expressing the desired /-function by means of the 
measured E-function in the form 

I(R cos a, R sin a) 

= - (1 /~c )  (l/r) -~r ~ E([Rcos(e-a)+r] 
e~r=0 ~=0 

× cos e, [R cos ( e -  ~) + r] sin e)deldr. (7) 

The total  direct beam intensity given by c need not 
be known for relative intensity measurements. A 
simple consideration shows that  the slit height of the 
detector represents similarly a constant factor which 
can be introduced into (7). 

R e m a r k s  on prac t ica l  application 
The practical use of determining the unsmeared 
small-angle intensity distribution of a general shape 
according to (7) can be recommended only when 
counter technique is used; all necessary measured 
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da t a  cannot  be obtained from a single diffraction 
photograph.  The sample-holder of the small-angle 
camera must  allow the sample a possibility of turning 
about  the  axis parallel  to the beam direction. The 
measurement  of in tegrated intensities is simplified by  
adopt ing the geometrical  a r rangement  in such a way  
t h a t  the  vert ical  extension of the measured diffuse 
pattern does not exceed the  height of the counter  
entrance-slit ,  corresponding to the constant  radial  
sensit ivity of the  counter. The integrat ion of the 
intensi ty  along the  various t-axes is then  performed 
automat ical ly .  The to ta l  amount  of the measured da t a  
necessary for carrying out the mathemat ica l  operations 

involved in (7) with sufficient accuracy is in this case 
pract ical ly  the same as with the  f requent  point-by- 
point  intensi ty measurements .  

I wish to t hank  my  colleague J .  Lees CSc for valuable  
discussions. 
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The crystal structure of phillipsite has been determined from the Okl, hO1, and hkO electron density 
projections and has been refined by means of a three dimensional least-square procedure. The unit 
cell is orthorhombic, B2mb, a--9.965, b= 14.25~, c=  14.252 /~ and there are two formula weights 
of probable composition (KxNal_z)sSillA1503~.. 10H20 in the unit cell. The silicate framework can 
be described as consisting of a fundamental unit of two tetrahedra linked head to head through 
an apical oxygen atom. Ten of these double traits are then linked together by sharing corners into 
an S shaped configuration which is approximately 14/~ long and 7 A wide. The open ends of this S 
configuration link to other S units through the oxygen atoms of the upper and lower bases of the 
double unit into a three dimensional network. Adjacent S units are ½a apart  so that  large channels 
exist both parallel to a and to b. The channel parallel to a is octagonally shaped and has an open 
passage with a 12/~2 cross section. The channel parallel to b has a rectangular cross section which 
is approximately 9 A 2. The locations of the exchangeable ions and of the water molecules are 
discussed. 

Introduct ion  

The crystal  chemical investigations of the zeolite 
minerals have  received a sharp st imulus because of 
the almost  s imultaneous recognition t h a t  these com- 
pounds can par t ic ipate  in m a n y  industr ial ly useful 
physico-chemical reactions and  tha t  they  also fre- 
quent ly  consti tute an  impor tan t  fraction of sedimen- 
t a r y  rocks in which they  occur both as a diagenetic 
product and also as accessory autMgenic crystals. 
The general features of zeolite s tructures were estab- 
lished by  m a n y  of the early workers in X - r a y  crystallo- 
g raphy  (Bragg, 1937) and recently m a n y  zeolite struc- 
tures have been redetermined by modern methods 
(Nowacki & Bergerhoff, 1957; Meier, 1960). Lit t le 
attention had  been devoted to the na tura l ly  occurring 
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lamellar type  zeolites. Strunz (1957) invest igated 
the latt ice constants  of phillipsite and reports  

a = 10.02, b = 14-28, c = 8.64 A ; fl = 125 ° 40' 

and W y a r t  (1938) reports  similar values for the mineral  
christianite. The minerals phillipsite and offretite also 
have similar unit  cells and compositions. All these 
minerals probably  have an almost  identical silicate 
framework and may differ only in the type of ex- 
changeable ion which is present.  

The mineral  phillipsite was chosen for this in- 
vestigation because of its widespread occurrence in 
sediments;  it is considered to have a s t ructura l  rela- 
t ionship to some of the synthet ical ly  produced molec- 
ular  sieves and it is a member  of a group of zeolites 
whose s t ructure  until  recently (Sadanaga et al., 1960) 
had not  been studied in detail. The mater ia l  which 
was used in this investigation was supplied by Dr.  
G. Arrhenius of the Scripps Ins t i tu t ion  of Ocean- 


